Skip to Content

harvard gsd

Designers as captains of industry

Thermoforming is a widespread manufacturing process that produces complex designs by heating, molding and trimming sheet plastics. A $10 billion industry in the United States alone, its products are ubiquitous in everyday life, ranging from disposable cups to car door and dashboard panels.

However, it was plastic lightbulb packaging that caused a metaphorical lightbulb to flash on for designers Lee Su Huang and Gregory Thomas Spaw in late 2008.

“The eureka moment happened on a visit to a local convenience store, when we saw the plastic blister packaging that lightbulbs came in,” recalls Huang, an assistant professor at the University of Florida’s School of Architecture. “It struck us that this kind of packaging is both incredibly light and incredibly strong, and we became fascinated by the type of snap joint that fastens its various pieces to each other.”

The two designers, then students at Harvard University’s Graduate School of Design, were inspired to work together on an independent project exploring thermoforming. Now—despite being separated by careers some 500 miles apart—Huang and Spaw are continuing that research with the help of a $10,000  BSA Research in Architecture grant.

“What we are interested in is reappropriating technology that isn’t commonplace in the architectural realm but that has a lot of potential,” says Spaw, a lecturer at the University of Tennessee’s School of Architecture. “We think architecture could benefit from thermoforming’s inherent advantages: the material’s lightness, low cost and readily accessible manufacturing technology.”

Thermoforming also allows for rapid turnaround time in the R&D of new products: Once a mold has been completed and tested, thermoforming can mass-produce pieces as quickly as one unit per minute.

Meanwhile, the polyethylene terephthalate (PETG) plastic most commonly used for thermoforming has the highest recycling rate of all plastic types, while recent industry developments have made it possible to produce PETG plastic from sugarcane instead of fossil fuels—transforming plastics into an environmentally viable building material of the future.

The researchers are taking a two-prong approach to their project.

For starters, they plan to work with the University of Florida’s Materials Science & Engineering Department to test the strength of the snap joint used in thermoforming.

“No one has really tested how viable that joint is for architectural applications,” explains Huang. “That’s why we’ll work with materials scientists. They have universal testing machines, which can mount a snap joint correctly and then test how much force it takes to either pull it apart or cause the joint to fail.”

The team next plans to create a full-scale building prototype that “is very lightweight and smart, but also simple,” says Huang. “We hope to design a structure that doesn’t require any tools to put together. We imagine pieces that could be shipped to a disaster area as easily as plastic food cartons and then snapped together onsite to create emergency housing.”

After they finish their research in December, Huang and Spaw hope to present their work at conferences and events on innovative fabrication. In addition to publishing their results and findings, they also hope to exhibit the full-scale constructed prototype at different venues across the country.

The designers believe that their idea is the natural progression of the trend toward digital design and manufacturing seen in architecture schools today.

“In effect, that is thermoforming—only at a cottage-industry scale,” says Spaw. “This grant will help us push this type of design to the industrial level.”

Genevieve Rajewski is a Boston-based freelance writer who covers science, nature, animal issues, travel, food and passionate people for acclaimed publications such as Smithsonian, Washington Post Magazine, and the Boston Globe. Her website is

Top image courtesy of Lee Su Huang and Gregory Thomas Spaw.

Syndicate content